
Learning-based End-to-End Video Compression
Using Predictive Coding

Matheus C. de Oliveira∗, Luiz G. R. Martins∗, Henrique Costa Jung∗,
Nilson Donizete Guerin Jr∗, Renam Castro da Silva†, Eduardo Peixoto∗, Bruno Macchiavello∗,

Edson M. Hung∗, Vanessa Testoni†, and Pedro Garcia Freitas†
∗University of Brası́lia, †Samsung R&D Brazil,

Abstract—Driven by the growing demand for video appli-
cations, deep learning techniques have become alternatives for
implementing end-to-end encoders to achieve applicable com-
pression rates. Conventional video codecs exploit both spatial
and temporal correlation. However, due to some restrictions
(e.g. computational complexity), they are commonly limited
to linear transformations and translational motion estimation.
Autoencoder models open up the way for exploiting predictive
end-to-end video codecs without such limitations. This paper
presents an entire learning-based video codec that exploits spatial
and temporal correlations. The presented codec extends the
idea of P-frame prediction presented in our previous work.
The architecture adopted for I-frame coding is defined by a
variational autoencoder with non-parametric entropy modeling.
Besides an entropy model parameterized by a hyperprior, the
inter-frame encoder architecture has two other independent net-
works, responsible for motion estimation and residue prediction.
Experimental results indicate that some improvements still have
to be incorporated into our codec to overcome the all-intra coding
set up regarding the traditional algorithms High Efficiency Video
Coding (HEVC) and Versatile Video Coding (VVC).

I. INTRODUCTION

Video data takes over about 82% of the data transferred
on worldwide networks and that proportion has been firmly
growing further, as indicated in the last Cisco’s annual Visual
Networking Index [1]. Moreover, due to the pandemic, the
world is currently experiencing rapid worldwide growth of
private, public, and government entities that require employees
to work from home. This increases significantly the use of
video conference services [2]. Meanwhile, the introduction
of novel video communication technologies such as Wider
Color Gamut (WCG), High Dynamic Range (HDR), High
Frame-Rate (HFR), Ultra-High Definition (UHD), and the
forthcoming immersive video services have increased the chal-
lenge of transmitting video information. Therefore, efficient
video compression has a fundamental role to enable these
technologies, being always pressing and urgent.

Since the first proposal of hybrid coding of pictorial data [3],
several video compression standards have been proposed. For
instance, H.264 [4] (the most widely used video codec),
H.265 [5], and H.266 [6] (the last video compression stan-
dard). All these codecs follow a hybrid coding framework that
includes transform-based coding, residual-based coding, mo-
tion compensation (i.e., inter-prediction), and intra-prediction
techniques. The algorithms that implement these techniques

vary from one standard to another although they all rely on
hand-crafted coding tools.

Over the last few decades, the development of these hand-
crafted techniques has led the video coding performance to
be improved around 50% every 10 years under the cost
of additional computational complexity, memory, and energy
consumption. For example, Seidel [7] has shown that there
is a trend in the complexity increase: each novel video
coding standard is about 10 times more complex than its
predecessor while its coding efficiency increases only 2 times.
Now, the video compression community has confronted novel
challenges to further enhance the coding efficiency to attend
to the strong requirements of future video communication
applications. So, there exists a demand for new video coding
schemes to explore new video compression directions, espe-
cially considering deep learning-based methods.

The study of deep learning-based video coding by leverag-
ing the state-of-the-art video coding standard HEVC [5] has
been an active area of research in recent years. Almost all the
modules of HEVC (intra-prediction, inter-prediction, quanti-
zation, entropy coding, and loop filtering) have been explored
and improved by incorporating various deep learning tech-
niques. Reviews of some representative works about trained
deep networks as tools within traditional coding schemes or
together with traditional coding tools can be found in the field
literature [8], [9]. From some evidence that deep learning can
significantly improve modules of classical video compression
frameworks [9], recent works [10]–[12] propose end-to-end
solutions for video coding, meaning that all operations per-
formed are derivable and the training of the different modules
can be done jointly. Those solutions are designed for high
compression efficiency and achieve this by exploiting spatial
and temporal redundancies within and across video frames.

There are two central challenges to build an end-to-end
video coding solution. First, it is very complex to design a sin-
gle neural network that replaces the whole video compression
system. The existing end-to-end learning-based approaches
cannot exploit the entire information redundancy with the
same efficiency of the existing hybrid coding scheme adopted
in traditional video codecs [13]. For that reason, it is very
desired to combine the advantages of both learning-based and
hybrid frameworks in traditional video coding. Second, there
is a need to create a strategy for generating and compressing
the motion information that is intrinsic to video information.

Video coding methods thickly depend on motion information
to decrease temporal redundancy. A straightforward solution is
to employ a learning-based optical-flow algorithm to produce
motion information.

In this paper, we propose an end-to-end deep video com-
pression solution that combines the advantages of both neu-
ral networks and predictive coding. The proposed model is
based on predictive coding as conventional video codecs. The
proposed video codec is composed of a type of artificial
neural network known as ‘autoencoder’ [14], an unsupervised
artificial neural network that learns how to efficiently reduce
the input and then learns how to reconstruct the input data from
the reduced representation. The autoencoder is responsible for
encoding the anchors (I-frames) and also the predicted frames
(P-frames). The structure of the codec and the basis of its
transformations are presented in Section III. Section IV covers
the training procedures, while results are presented in Section
V. Finally, conclusions are made in section VI.

II. A BRIEF REVIEW ON LEARNING-BASED CODING

End-to-end image coding has risen for less than five years,
inaugurating a novel field for lossy compression. The vast
majority of the end-to-end learning-based methods follow an
autoencoder-like [15] approach. Different variations of this ap-
proach were proposed by Toderici et al. [16]–[18] and Gregor
et al. [19] to obtain a compact and discrete representation of
images by applying quantization to the bottleneck layer of au-
toencoders. To control and enable variable bitrate, these mod-
els progressively analyze (encode) and synthesize (decode)
residual errors with multiple autoencoders. Progressive codes
are indispensable to Rate-Distortion Optimization (RDO) since
better visual quality can be achieved with the increase of
bitrate. Baig et al. [20] proposed an inpainting approach to
enable a progressive analyzer that exploits spatial correlation
presented by neighboring blocks to reduce redundancy in
the image. Balle et al. [21] proposed an image compression
framework consisting of a nonlinear analysis transformation
(encoder), a uniform quantizer, and a nonlinear synthesis
transformation (decoder) that, unlike the preceding works and
under certain conditions, achieved a dramatic improvement
in visual quality, exhibiting better rate-distortion performance
than the JPEG and JPEG 2000 standards. Similarly, Theis
et al. [22] changed the latent/bottleneck quantization with a
smooth estimate with an incremental training strategy. The
learning-based approach is still a hot topic in the image
coding community and recent trends basically include the
development of components of autoencoder architectures [23]–
[25].

Unlike images, videos contain highly temporal redundancy
between consecutive frames. This redundancy is exploited
using frame interpolation [26] and frame extrapolation [27],
[28]. Moreover, some works estimate the optical flow between
frames [29]–[31]. On the other hand, Spatial Transformer
Networks (STN) apply parametric transformations (i.e., zoom,
rotate, and skew) to blocks of feature maps to spatially trans-
form the feature maps to capture temporal correlation [32],

[33]. Inspired by the aforementioned efforts and based on
the successful research in learning-based image compression,
we further explore a learning-based framework for video
compression.

III. PROPOSED LOW-DELAY AI BASED VIDEO CODEC

We adopted a Group of Pictures (GOP) organization for
the proposed codec. Each GOP comprises a group of N
consecutive frames. While it is usual that each GOP has the
same number of frames, this is not a requirement in our codec
– each GOP can have any number of frames. Also, each GOP
is completely independent of previous GOPs – there is no
dependency neither from reference pictures nor from entropy
encoders. As such, each GOP can be encoded or decoded
in parallel without any degradation. This creates a versatile
structure that can be applied in several real applications. The
video segmentation into GOP sets is depicted in Fig. 1.

As commonly defined in video coding, in the proposed
codec, the first frame of a GOP is an intra frame. All other
N − 1 frames are encoded using inter-frame prediction (P -
frames). At this point, we are using exclusively the previous
frame as the reference. The arithmetic encoder is initialized
at the start of each GOP and finalized at the end of the GOP.
This GOP structure is depicted in Fig. 2.

The frames are encoded using a YUV 4:4:4 format rep-
resented as floating-point variables in the range [0, 1] per
channel. Regardless of the input format used, the video is first
transformed into this representation. After decoding (or when
computing the reconstructed video in the encoder) the video
is then transformed back to its original format.

A. Intra-Frame Encoding

The main architecture adopted for intra-frame coding is
based on the work by Ballé et al. [21] shown in Fig. 3.
The codec is optimized to minimize the following objective
function:

L[ga, gs, pỹ] = −E[log2 pỹ] + λE[d(x, x̂)]. (1)

The first component of the above loss is the expectation of
the information content, i.e., the entropy, whereas the second
term is the expectation of the distortion, which is related to the
reconstruction quality. The symbol λ controls the relevance
of the reconstruction in the optimization – it works as the
Lagrange multiplier of common rate-distortion optimization.

In the nomenclature used by the authors, and well-
established in the literature, analysis transform is the encoder
component ga, which takes the input frame x into the reduced
dimensional latent space y. Synthesis transform is the decoder
component gs, which aims to produce a distribution from
which the reconstruction x̂ can be gathered.

Kingma et al. [34] show that the formulated rate-distortion
loss is equivalent to the Bayesian variational autoencoder loss
function. From this result, the distribution of the intra-frame
reconstruction, which is equivalent to the likelihood of the
generative model, is represented by a Gaussian, whose mean is

GOP 0 GOP 1 GOP K

...

Fig. 1: Frame separation in GOP sets.

I

GOP

...P P P

Fig. 2: GOP Structure. The arrows point to the reference frame.

0010111xi AC

Prob.
model

ADForward
transform

Backward
transform

ỹ, ŷ ỹ, ŷ fi

Fig. 3: Intra frame encoder architecture.

xi−1

+ xi;dec

Encoder

0010111

Residue

xi;pred

Residue

decoder

Warping

W (xi−1; θ)

xi

ri

Common

trunk

decoder Motion

decoder

Fig. 4: Overall model architecture

defined by the synthesis transform, and the scale is controlled
by the λ hyperparameter.

px|ỹ(x|ỹ) = N (x|gs(ỹ), (2λ)−11), (2)

Also, the code (latent) distribution is modeled with a non-
parametric model, with independent marginal components:

py|ψ(ψ
(0), ψ(1), ...) =

∏
i

pyi|ψ(i)(ψ(i)),with y = ga(x) (3)

with ψ(i) representing the parameters used to approxi-
mate the distribution. Latent quantization consists of a non-
differentiable operation: ŷi = round(yi). In training time, this
procedure is replaced by additive uniform noise. This approach
yields the definition of the relaxed probability model of the
code, denoted here as ỹ.

pỹ|ψ(ỹ|ψ) =
∏
i

(
pyi|ψ(i)(ψ(i)) ∗ U (−1/2, 1/2)

)
(ỹi) (4)

As the network converges based on Eq. 1, the authors
in [21], [35] conclude that the continuous probability density
presented in Eq. 4 results in an approximation for the quanti-
zation with unitary bin size, which is actually performed at test
time. The fully-factorized density model adopted for the prior
pỹ supports the non-parametric nomenclature for the network
used in intra encoder. Its architecture is detailed in Table I.

TABLE I: Encoder and decoder networks for the intra-frame
codec. In our notation, C-9 × 9, ↓2, GDN, 256 indicates a
convolutional layer with 256 filters, each with spatial support
9 × 9, stride 2, and the Generalized Divisive Normalization
(GDN) as the activation function. Similarly, TC refers to
transposed convolutional layer and IGDN to inverse GDN.

Encoder Decoder
Forward transform Backward transform

C-9× 9, ↓2, GDN, 256 TC-9× 9, ↑2, IGDN, 256
C-5× 5, ↓2, GDN, 256 TC-5× 5, ↑2, IGDN, 256

C-5× 5, ↓2, 256 TC-5× 5, ↑2, 256

The quantized coefficients are encoded using a simple
arithmetic encoder with fixed tables for each coefficient. The
tables are gathered and stored during training, and then used
at runtime to encode the coefficients in a lossless fashion.

B. Inter-Frame Encoding

The architecture of our inter-frame encoder was initially
presented in our previous work [36] and is shown in Fig. 4.
It is comprised of stacked convolutional layers as detailed in
Tables II and III. We have used 256 filters in the convolutional
layers. As observed in Fig. 4, the autoencoder composed
by the Encoder and the Common Trunk Decoder is the
first transformation to which the joint input is submitted. Its
architecture, proposed by Minnen et al. [37] as an extension

xi−1 0010111

xi

AC

Hyper
encoder

Hyper
decoder

AC AD

Prob.
model

Prob.
model

0101

AD

Ψ

Forward
transform

Backward
transform

~y, ŷ ~y, ŷ

~z, ẑ ~z, ẑabs(~y, ŷ)

fi

Fig. 5: Encoder/Common trunk decoder architecture. AC and AD stand for Arithmetic encoder and decoder, respectively.

TABLE II: Encoder and decoder networks for the inter-frame
codec. The notation follows the same established in Table I.
ReLU refers to the rectified linear unit activation function.

Encoder Common Trunk Decoder
Forward transform Backward transform

C-5× 5, ↓2, GDN, 256 TC-5× 5, ↑2, IGDN, 256
C-5× 5, ↓2, GDN, 256 TC-5× 5, ↑2, IGDN, 256
C-5× 5, ↓2, GDN, 256 TC-5× 5, ↑2, IGDN, 256

C-5× 5, ↓2, 256 TC-5× 5, ↑2, 256
Hyper encoder Hyper decoder

C-3× 3, ReLU, 256 TC-5× 5, ↑2, ReLU, 256
C-5× 5, ↓2, ReLU, 256 TC-5× 5, ↑2, ReLU, 256

C-5× 5, ↓2, 256 TC-3× 3, 256

TABLE III: Motion decoder and residue decoder networks.

Motion decoder Residue decoder
C-5× 5, ReLU, 32 C-5× 5, ReLU, 32

C-1× 1, 2 C-1× 1, 3

of the model introduced by Balle et al. [35], is illustrated in
Fig. 5 and detailed in Table II. It is important to mention
that our proposal uses image warping that is not limited to
discrete spatial locations to perform motion compensation in
inter-frame prediction.

In this modeling, it is assumed that each dimension ỹi of the
main latent space follows a Gaussian with mean µi and stan-
dard deviation σi and is independent of the remaining ones.
These parameters are obtained from a hyperprior modeled by
the auxiliary variational autoencoder. For the sake of notation,
the components of this additional autoencoder are represented
by h. Therefore, the associated latent is denoted by z = ha(y)
and the hyper-synthesis is referred to as hs.

As there is no prior beliefs, the modeling of pz̃ follows
a non-parametric approach similar to our intra-encoder and
equivalent to the one illustrated in Eq. 4. Since the hyperprior
autoencoder is optimized to produce parameters [µ,σ] =

hs(z̃), the posterior pỹ|z̃ in training time is given by Eq. 5.

pỹ|z̃(ỹ|z̃) =
∏
i

(
N (µi, σ

2
i) ∗ U (−1/2, 1/2)

)
(ỹi). (5)

Notice that by stacking optimized transformations according
to the modeling presented in Eq. 4 (adapted for z̃) and 5, a
single joint factorized posterior under variational analysis is
obtained. The hyper-latent z is considered as side information
and should also be compressed. Therefore, the loss espoused
for inter-frame encoding is presented in Eq. 6 and it is an
expanded version of the one shown in Eq. 1.

L[ga, gs, ha, hs, pỹ, pz̃] = −E1 − E2 + λE[d(z, ẑ)], (6)

where E1 = E[log2 pỹ] and E2 = E[log2 pz̃]. It can be seen in
Fig. 4 that the feature maps produced by the Common Trunk
Decoder are directly submitted to the Motion and Residue
Decoders. Therefore, the Encoder is jointly optimized to
generate a latent which also contains information for motion
estimation and for obtaining residue between frames.

The purpose of the Motion Decoder is to produce the
parameters θ = {tx, ty} ∈ R2·w·h for a warping transfor-
mation W (·;θ) over the reference frame xi−1, previously
reconstructed by the non-parametric model, described in Sec-
tion III-A. This transformation is performed by the Spatial
Transform Network [32] and has been restricted to a bidirec-
tional translation, which is replicated in all channels, resulting
in xi,pred. Following [32], each pixel in the warped output
xi,pred is computed by applying a sampling kernel centered
at a particular location (xi−1, yi−1) in the reference frame
xi−1. (

xi−1
yi−1

)
=

(
1 0 tx
0 1 ty

)(
xi yi 1

)T
(7)

The Residue Decoder captures the details present in the xi
frame that could not be extracted from xi,pred. It is important

to point out that the unique input of the network dedicated to
the residuals prediction is the Common Trunk Decoder feature
maps. In this context, the block generates the novelties of the
xi frame with respect to xi,pred without previously knowing
the parameters θ that had defined the warping transformation.

For the inter-frame coding, both the hyperprior and main
latent quantized coefficients are encoded using arithmetic
coding. The hyperprior coefficients are encoded in the same
fashion as those obtained in intra-frame coding, using fixed
tables for each coefficient derived during the training stage.
The quantized coefficients of the main latent are encoded using
a probability table derived from the variance estimated by the
hyperprior, which strategy was suggested by Balle et al. [35].
Since this hyperprior is also transmitted to the receiver, the
decoder can derive this probability table to perfectly decode
the bitstream (i.e., the unique losses in these coefficients arise
from the quantization process).

IV. TRAINING PROCEDURE

As described in Section III, the proposed codec is composed
of two main networks: one to encode a single frame (intra
frame encoder) and another one to encode a single frame using
a given reference frame (inter frame encoder). Therefore, they
are not trained together but in two stages, of which the first is
dedicated to the intra encoder network and the second to the
inter-encoder network. This training was performed on GPU
using NVidia GeForce RTX 2080 Ti graphics cards.

1) Training the Intra Model: We create a new training
dataset by combining the data available in the following
datasets to train our intra-frame encoder: (i) CLIC Professional
dataset [38] (628 images) ; (ii) CLIC Mobile dataset [38]
(1111 images); (iii) DIV2K dataset [39] (902 images); (iv)
Ultra-Eye Ultra HD dataset [40] (41 images); (v) MCL-JCI
[41], [42] (51 images); and (vi) FLICKR2K dataset [43]
(2650 images). The images in these datasets were converted
to YUV 4:4:4 to unify the input format. For each image, we
extract patches that consist of non-overlapping blocks of size
256 × 256 pixels. These patches were taken from a grid that
is randomly displaced by an offset of eight pixels in each
direction. This small random displacement is applied to avoid
prior compression artifacts appear in the same positions in
every patch. The full dataset consists of 88,529 image patches.

2) Training the Inter Model: To train the inter-frame codec,
we need a pair of frames, of which one will be used as a
reference and the other will actually be encoded. Naturally,
the network is trained to optimize the reconstruction of this
second frame only (denoted current or target frame). To train
the network using a scenario closer to the testing one, the
reference frame is first encoded using the already trained intra-
frame codec and this decoded frame is concatenated with the
following to feed the inter-frame network.

In order to have a dataset composed of sequential frames,
we have gathered videos from the UGC Dataset [44], a large
set made available from YouTube videos of different content.
We have used videos coming from the following subsets:
(i) Animation (22 videos); (ii) CoverSong (22 videos); (iii)

Gaming (39 videos); (iv) HowTo (17 videos); (v) Lecture (24
videos); (vi) LiveMusic (21 videos); (vii) Lyrics (2 videos);
(viii) MusicVideo (26 videos); (ix) NewsClip (17 videos);
(x) Sports (33 videos); (xi) VerticalVideo (20 videos); and
(xii) Vlog (32 videos). Only videos originally in 1920× 1080
resolution (1080P) were used. The contents are very diverse
with natural and synthetic (games and animation) images.
Some natural videos have low movement content, such as
News clips, as well as very high movement content, such as
Sports videos. Unexpectedly, many videos from the Animation
class had very little movement. In total, 275 videos were used.
Patches with 256×256 dimensions are randomly cropped from
a region in the video, and the same offset is used for all frames
(i.e., the reference and target images are always co-located).
Most of this content is in YUV 420 format, so we perform
a color space transformation to YUV 444 and normalize it to
the range [0, 1].

V. RATE-DISTORTION EVALUATION

We evaluated the rate-distortion relation using the JVET
data set, specifically class D and F. The encoding parameters
follow the recommendation from the draft test conditions
defined for DNNVC ISO/IEC JTC1/SC29/WG11 activity. The
videos were encoded with a 10 bit depth and the Intra Period
(i.e., GOP size) is constant within a sequence and depends on
the frame rate of the source. The video sequences used in our
tests were:
• RaceHorses (300 frames, 30 fps, 416 × 240 pixels)
• BQSquare (600 frames, 60 fps, 416 × 240 pixels) with

GOP size equals 64.
• BlowingBubbles (500 frames, 50 fps, 416 × 240 pixels)

with GOP size equals 48.
• BasketballPass (500 frames, 50 fps, 416 × 240 pixels)
• BasketballDrillText (500 frames, 50 fps, 832 × 480

pixels) with GOP size equals 48.
Fig. 6 depicts the results for Y-PSNR, Y-MSSSIM, and Y-

SSIM for the abovementioned sequences. These plots show
the RD curves of our codec, HEVC, and VVC codecs, all in
low-delay mode, using the same intra period. The results of
the three codecs in all intra configurations were also included.
From the frames-per-second rate required by the sequences,
the abscissa axis has the unit kbps instead of the unit bpp,
which the latter is adopted to evaluate the image encoders.

From these plots, we can notice that VVC and HEVC in
low-delay (with inter configuration) consistently outperformed
our codec. Our codec has a performance more competitive
when compared with the HEVC and VVC both in all-intra
profile, especially when evaluated by subjective metrics. Fig. 7
and 8 provide a visual comparison between frames in their
original forms, encoded by a traditional algorithm and encoded
by one of our proposed codecs.

Some features can be observed when analyzing RD curves
referring to neural codecs. For example, the non-monotonicity
of a curve derives from the fact that each of the points is
composed of two independently and stochastically optimized

PSNR - Y MS-SSIM - Y SSIM - Y
(a

)
R

ac
e

H
or

se
s

0 500 1000 1500 2000 2500 3000 3500
Bitrate (kbps)

26

28

30

32

34

36

38

40
PS

NR
 -

Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

0 500 1000 1500 2000 2500 3000 3500
Bitrate (kbps)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

M
S-

SS
IM

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

0 500 1000 1500 2000 2500 3000 3500
Bitrate (kbps)

0.70

0.75

0.80

0.85

0.90

0.95

SS
IM

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

(b
)

B
Q

Sq
ua

re

0 2000 4000 6000 8000 10000
Bitrate (kbps)

22.5

25.0

27.5

30.0

32.5

35.0

37.5

PS
NR

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

0 2000 4000 6000 8000 10000
Bitrate (kbps)

0.88

0.90

0.92

0.94

0.96

0.98

M
S-

SS
IM

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

0 2000 4000 6000 8000 10000
Bitrate (kbps)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

SS
IM

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

(c
)

B
lo

w
in

g
B

ub
bl

es

0 1000 2000 3000 4000 5000 6000 7000 8000
Bitrate (kbps)

24

26

28

30

32

34

36

38

PS
NR

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

0 1000 2000 3000 4000 5000 6000 7000 8000
Bitrate (kbps)

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

M
S-

SS
IM

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

0 1000 2000 3000 4000 5000 6000 7000 8000
Bitrate (kbps)

0.5

0.6

0.7

0.8

0.9

SS
IM

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

(d
)

B
as

ke
tb

al
l

Pa
ss

0 1000 2000 3000 4000
Bitrate (kbps)

28

30

32

34

36

38

40

PS
NR

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

0 1000 2000 3000 4000
Bitrate (kbps)

0.88

0.90

0.92

0.94

0.96

0.98

M
S-

SS
IM

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

0 1000 2000 3000 4000
Bitrate (kbps)

0.75

0.80

0.85

0.90

0.95

SS
IM

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

(e
)

B
as

ke
tb

al
l

D
ri

ll
Te

xt

0 2500 5000 7500 10000 12500 15000 17500 20000
Bitrate (kbps)

28

30

32

34

36

38

PS
NR

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

0 2500 5000 7500 10000 12500 15000 17500 20000
Bitrate (kbps)

0.92

0.94

0.96

0.98

M
S-

SS
IM

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

0 2500 5000 7500 1000012500150001750020000
Bitrate (kbps)

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

SS
IM

 -
Y

hevc-all_intra
hevc-low_delay_p
proposed_codec
proposed_codec-all_intra
vvc-all_intra
vvc-low_delay_p

Fig. 6: RD results for different video sequences according to Y-PSNR, Y-MSSIM, and Y-SSIM metrics.

(a) Original Frame (b) Frame Encoded by HEVC - All Intra (c) Frame Encoded By Our All Intra Codec

Fig. 7: Comparisons for a frame from the sequence Blowing Bubbles.

(a) Original Frame (b) Frame Encoded by VVC - Low Delay P (c) Frame Encoded By Our Proposed Codec

Fig. 8: Comparisons for a frame from the sequence Basketball Drill.

models. Because of this, points with close hyper-parameters
may imply the reported behavior.

A conventional codec uses both intra and inter prediction
during P-frame encoding, while our model limits inter predic-
tion to temporal correlation and accuracy of the warping pro-
cess. Nevertheless, the proposed inter-encoding outperforms
the neural architecture, which uses only intra frames. That is,
the adoption of P-frames is shown to be superior to a sequence
encoded only by I-frames. Moreover, we presented a fully
operational end-to-end video codec based on autoencoder,
that uses a completely independent GOP structure that allows
for parallel encoding/decoding and uses a motion model that
is not limited to discrete spatial locations. While several
improvements can be made, at this point we already have an
encoder that can be comparable with HEVC (all-intra) in some
cases.

VI. CONCLUSIONS

In this paper, we extend our previous work [36] to imple-
ment a learning-based video codec with low-delay and all-
intra configurations, with an independent GOP structure. Some
future work may be devoted to improving the optical flow
predictions by decomposing the reference frames into feature
maps or performing transformations with learned kernels.
Furthermore, entropy models can become more robust by
adopting, for example, mixtures models. Additionally, some
intra prediction processes can also be incorporated into P-
frame encoding. Inter prediction can be refined by proposing
a network that merges the assignments of motion and residue
prediction, allowing sharing of weights and joint optimization.
Finally, a joint training strategy for the entire architecture can

significantly improve the RD performance since inter-frame
coding is highly dependent on the initial intra-frame reference.

ACKNOWLEDGMENT

Part of the results presented in this work was obtained
through the Deep Codec project funded by Samsung Eletrônica
da Amazônia Ltda under the Brazillian Informatics Law
8.248/91. BM thanks CNPq PQ 308548/2018-3.

REFERENCES

[1] G. M. D. T. Forecast, “Cisco visual networking index: Global mobile
data traffic forecast update, 2017–2022,” Update, vol. 2017, p. 2022,
2019.

[2] E. Koeze and N. Popper, “The virus changed the way we internet,” Apr
2020. [Online]. Available: https://www.nytimes.com/interactive/2020/
04/07/technology/coronavirus-internet-use.html

[3] A. Habibi, “Hybrid coding of pictorial data,” IEEE Transactions on
Communications, vol. 22, no. 5, pp. 614–624, 1974.

[4] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Trans. on Circuits and
Systems for Video Tech., vol. 13, no. 7, pp. 560–576, 2003.

[5] G. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the High
Efficiency Video Coding (HEVC) Standard,” IEEE Trans. on Circuits
and Systems for Video Tech., vol. 22, no. 12, pp. 1649–1668, 2012.

[6] G. Sullivan, “Versatile video coding (vvc) arrives,” in 2020 IEEE Inter-
national Conference on Visual Communications and Image Processing
(VCIP). IEEE, 2020, pp. 1–1.

[7] I. Seidel, “Exploiting satd properties to reduce energy in video cod-
ing,” Ph.D. dissertation, The Federal University of Santa Catarina,
https://repositorio.ufsc.br/handle/123456789/216224, 2020.

[8] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang, and S. Wanga, “Image and
video compression with neural networks: A review,” IEEE Transactions
on Circuits and Systems for Video Technology, 2019.

[9] D. Liu, Y. Li, J. Lin, H. Li, and F. Wu, “Deep learning-based video
coding: a review and a case study,” ACM Computing Surveys (CSUR),
vol. 53, no. 1, pp. 1–35, 2020.

[10] C.-Y. Wu, N. Singhal, and P. Krahenbuhl, “Video compression through
image interpolation,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 416–431.

[11] O. Rippel, S. Nair, C. Lew, S. Branson, A. G. Anderson, and L. Bourdev,
“Learned video compression,” in The IEEE International Conference on
Computer Vision (ICCV), October 2019.

[12] A. Habibian, T. v. Rozendaal, J. M. Tomczak, and T. S. Cohen, “Video
compression with rate-distortion autoencoders,” in Proceedings of the
IEEE International Conference on Computer Vision, 2019, pp. 7033–
7042.

[13] G. Lu, X. Zhang, W. Ouyang, L. Chen, Z. Gao, and D. Xu, “An end-
to-end learning framework for video compression,” IEEE transactions
on pattern analysis and machine intelligence, 2020.

[14] A. R. T. Dumas and C. Guillemot, “Autoencoder based image com-
pression: Can the learning be quantization independent?” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), April 2018.

[15] D. H. Ballard, “Modular learning in neural networks.” in AAAI, vol. 647,
1987, pp. 279–284.

[16] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Minnen, J. Shor,
and M. Covell, “Full resolution image compression with recurrent
neural networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 5306–5314, preprint
available at http://arxiv.org/abs/1608.05148.

[17] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen,
S. Baluja, M. Covell, and R. Sukthankar, “Variable rate image com-
pression with recurrent neural networks,” in International Conference
on Learning Representations (ICLR), April 2016.

[18] N. Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh, T. Chinen,
S. J. Hwang, J. Shor, and G. Toderici, “Improved Lossy Image
Compression with Priming and Spatially Adaptive Bit Rates for
Recurrent Networks,” Cornell University Library, Tech. Rep., mar
2017. [Online]. Available: http://arxiv.org/abs/1703.10114

[19] K. Gregor, F. Besse, D. Jimenez Rezende, I. Danihelka, and
D. Wierstra, “Towards conceptual compression,” in Advances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc.,
2016, pp. 3549–3557. [Online]. Available: http://papers.nips.cc/paper/
6542-towards-conceptual-compression.pdf

[20] M. H. Baig, V. Koltun, and L. Torresani, “Learning to inpaint for image
compression,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, 2017, pp. 1246–1255.

[21] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image
compression,” in International Conference on Learning Representations
(ICLR), April 2017, pp. 1–27.

[22] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image
compression with compressive autoencoders,” Tech. Rep., 2017.
[Online]. Available: https://openreview.net/pdf?id=rJiNwv9gg

[23] F. Mentzer, L. V. Gool, and M. Tschannen, “Learning better lossless
compression using lossy compression,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
6638–6647.

[24] J. Ballé, P. A. Chou, D. Minnen, S. Singh, N. Johnston, E. Agustsson,
S. J. Hwang, and G. Toderici, “Nonlinear transform coding,” IEEE
Journal of Selected Topics in Signal Processing, vol. 15, no. 2, pp.
339–353, 2020.

[25] S. Singh, S. Abu-El-Haija, N. Johnston, J. Ballé, A. Shrivastava, and
G. Toderici, “End-to-end learning of compressible features,” in 2020
IEEE International Conference on Image Processing (ICIP). IEEE,
2020, pp. 3349–3353.

[26] S. Santurkar, D. Budden, and N. Shavit, “Generative compression,” in
2018 Picture Coding Symposium (PCS). IEEE, 2018, pp. 258–262.

[27] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video predic-
tion beyond mean square error,” Jan. 2016, 4th International Conference
on Learning Representations, ICLR 2016 ; Conference date: 02-05-2016
Through 04-05-2016.

[28] X. Jin, Z. Chen, S. Liu, and W. Zhou, “Augmented coarse-to-fine video
frame synthesis with semantic loss,” in Chinese Conference on Pattern
Recognition and Computer Vision (PRCV). Springer, 2018, pp. 439–
452.

[29] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. Van Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning
optical flow with convolutional networks,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 2758–2766.

[30] D. Sun, X. Yang, M. Liu, and J. Kautz, “Models matter, so does
training: An empirical study of cnns for optical flow estimation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1,
2019.

[31] Z. Ren, J. Yan, B. Ni, B. Liu, X. Yang, and H. Zha, “Unsupervised deep
learning for optical flow estimation,” in AAAI, 2017, pp. 1495–1501.
[Online]. Available: http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/
view/14388

[32] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu,
“Spatial transformer networks,” 2016, computer Vision and Pattern
Recognition.

[33] C.-H. Lin and S. Lucey, “Inverse compositional spatial transformer
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

[34] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[35] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Varia-
tional image compression with a scale hyperprior,” 2018, international
Conference on Learning Representations.

[36] R. C. d. Silva, N. D. G. Jr., P. Sanches, H. C. Jung, E. Peixoto,
B. Macchiavello, E. M. Hung, V. Testoni, and P. G. Freitas, “Joint motion
and residual information latent representation for p-frame coding,” in 3rd
Challenge on Learned Image Compression, 2020.

[37] D. Minnen, J. Ballé, and G. Toderici, “Joint Autoregressive and
Hierarchical Priors for Learned Image Compression,” in NIPS, sep
2018. [Online]. Available: http://arxiv.org/abs/1809.02736

[38] “Dataset of the CVPR workshop and challenge on learned image
compression (CLIC),” online, http://www.compression.cc.

[39] E. Agustsson and R. Timofte, “NTIRE 2017 challenge on single image
super-resolution: Dataset and study,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, July 2017,
DIV2K dataset: DIVerse 2K resolution high quality images as used for
the challenges at NTIRE (CVPR 2017 and CVPR 2018) and at PIRM
(ECCV 2018), available from https://data.vision.ee.ethz.ch/cvl/DIV2K/.

[40] H. Nemoto, P. Hanhart, P. Korshunov, and T. Ebrahimi, “Ultra-Eye:
UHD and HD images eye tracking dataset,” in Sixth International
Workshop on Quality of Multimedia Experience (QoMEX), Singapore,
September 2014, available from http://mmspg.epfl.ch/ultra-eye.
[Online]. Available: http://infoscience.epfl.ch/record/200190

[41] L. Jin, J. Y. Lin, S. Hu, H. Wang, P. Wang, I. Katsavounidis,
A. Aaron, and C.-C. J. Kuo, “Mcl-jci dataset,” online, http://mcl.usc.
edu/mcl-jci-dataset/.

[42] ——, “Statistical Study on Perceived JPEG Image Quality via MCL-JCI
Dataset Construction and Analysis,” in Electronic Imaging (2016), the
Society for Imaging Science and Technology (IS&T), 2016.

[43] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual
networks for single image super-resolution,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, July
2017.

[44] “Youtube dataset for video compression research,” online, https://media.
withyoutube.com/.

